Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Arch Biochem Biophys ; 754: 109959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490311

RESUMO

Electrical synapses are essential components of neural circuits. Neuronal signal transduction across electrical synapses is primarily mediated by gap junction channels composed of Connexin36 (Cx36), the lack of which causes impaired electrical coupling between certain neurons including cortical interneurons and thalamic reticular nucleus (TRN) neurons. However, the structural basis underlying Cx36 function and assembly remains elusive. Recently, Lee et al. reported cryo-EM structures of Cx36, thus provided first insights of its gating mechanism. Here, we report a consistent cryo-EM structure of Cx36 determined in parallel, and describe unique interactions underpinning its assembly mechanism in complementary to the competing work. In particular, we found non-canonical electrostatic interactions between protomers from opposing hemichannels and a steric complementary site between adjacent protomers within a hemichannel, which together provide a structural explanation for the assembly specificity in homomeric and heteromeric gap junction channels.


Assuntos
Sinapses Elétricas , 60545 , Conexinas/química , Conexinas/metabolismo , Microscopia Crioeletrônica , Sinapses Elétricas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos , Neurônios/metabolismo , Subunidades Proteicas , Humanos
3.
Proc Natl Acad Sci U S A ; 121(8): e2313042121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346194

RESUMO

One of the very fundamental attributes for telencephalic neural computation in mammals involves network activities oscillating beyond the initial trigger. The continuing and automated processing of transient inputs shall constitute the basis of cognition and intelligence but may lead to neuropsychiatric disorders such as epileptic seizures if carried so far as to engross part of or the whole telencephalic system. From a conventional view of the basic design of the telencephalic local circuitry, the GABAergic interneurons (INs) and glutamatergic pyramidal neurons (PNs) make negative feedback loops which would regulate the neural activities back to the original state. The drive for the most intriguing self-perpetuating telencephalic activities, then, has not been posed and characterized. We found activity-dependent deployment and delineated functional consequences of the electrical synapses directly linking INs and PNs in the amygdala, a prototypical telencephalic circuitry. These electrical synapses endow INs dual (a faster excitatory and a slower inhibitory) actions on PNs, providing a network-intrinsic excitatory drive that fuels the IN-PN interconnected circuitries and enables persistent oscillations with preservation of GABAergic negative feedback. Moreover, the entities of electrical synapses between INs and PNs are engaged in and disengaged from functioning in a highly dynamic way according to neural activities, which then determine the spatiotemporal scale of recruited oscillating networks. This study uncovers a special wide-range and context-dependent plasticity for wiring/rewiring of brain networks. Epileptogenesis or a wide spectrum of clinical disorders may ensue, however, from different scales of pathological extension of this unique form of telencephalic plasticity.


Assuntos
Sinapses Elétricas , Epilepsia , Animais , Humanos , Sinapses/fisiologia , Interneurônios/fisiologia , Encéfalo , Epilepsia/patologia , Convulsões/patologia , Mamíferos
4.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164593

RESUMO

The thalamic reticular nucleus (TRN) inhibits sensory thalamocortical relay neurons and is a key regulator of sensory attention as well as sleep and wake states. Recent developments have identified two distinct genetic subtypes of TRN neurons, calbindin-expressing (CB) and somatostatin-expressing (SOM) neurons. These subtypes differ in localization within the TRN, electrophysiological properties, and importantly, targeting of thalamocortical relay channels. CB neurons send inhibition to and receive excitation from first-order thalamic relay nuclei, while SOM neurons send inhibition to and receive excitation from higher-order thalamic areas. These differences create distinct channels of information flow. It is unknown whether TRN neurons form electrical synapses between SOM and CB neurons and consequently bridge first-order and higher-order thalamic channels. Here, we use GFP reporter mice to label and record from CB-expressing and SOM-expressing TRN neurons. We confirm that GFP expression properly differentiates TRN subtypes based on electrophysiological differences, and we identified electrical synapses between pairs of neurons with and without common GFP expression for both CB and SOM types. That is, electrical synapses link both within and across subtypes of neurons in the TRN, forming either homocellular or heterocellular synapses. Therefore, we conclude that electrical synapses within the TRN provide a substrate for functionally linking thalamocortical first-order and higher-order channels within the TRN.


Assuntos
Sinapses Elétricas , Núcleos Talâmicos , Camundongos , Animais , Sinapses Elétricas/fisiologia , Potenciais de Ação/fisiologia , Núcleos Talâmicos/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Tálamo
5.
Elife ; 122024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224479

RESUMO

Visualizing synaptic connectivity has traditionally relied on time-consuming electron microscopy-based imaging approaches. To scale the analysis of synaptic connectivity, fluorescent protein-based techniques have been established, ranging from the labeling of specific pre- or post-synaptic components of chemical or electrical synapses to transsynaptic proximity labeling technology such as GRASP and iBLINC. In this paper, we describe WormPsyQi, a generalizable image analysis pipeline that automatically quantifies synaptically localized fluorescent signals in a high-throughput and robust manner, with reduced human bias. We also present a resource of 30 transgenic strains that label chemical or electrical synapses throughout the nervous system of the nematode Caenorhabditis elegans, using CLA-1, RAB-3, GRASP (chemical synapses), or innexin (electrical synapse) reporters. We show that WormPsyQi captures synaptic structures in spite of substantial heterogeneity in neurite morphology, fluorescence signal, and imaging parameters. We use these toolkits to quantify multiple obvious and subtle features of synapses - such as number, size, intensity, and spatial distribution of synapses - in datasets spanning various regions of the nervous system, developmental stages, and sexes. Although the pipeline is described in the context of synapses, it may be utilized for other 'punctate' signals, such as fluorescently tagged neurotransmitter receptors and cell adhesion molecules, as well as proteins in other subcellular contexts. By overcoming constraints on time, sample size, cell morphology, and phenotypic space, this work represents a powerful resource for further analysis of synapse biology in C. elegans.


Assuntos
Caenorhabditis elegans , Sinapses Elétricas , Humanos , Animais , Animais Geneticamente Modificados , Corantes , Fluorescência
6.
Nat Rev Neurosci ; 25(2): 131-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172626

RESUMO

Synapses are a key component of neural circuits, facilitating rapid and specific signalling between neurons. Synaptic engineering - the synthetic insertion of new synaptic connections into in vivo neural circuits - is an emerging approach for neural circuit interrogation. This approach is especially powerful for establishing causality in neural circuit structure-function relationships, for emulating synaptic plasticity and for exploring novel patterns of circuit connectivity. Contrary to other approaches for neural circuit manipulation, synaptic engineering targets specific connections between neurons and functions autonomously with no user-controlled external activation. Synaptic engineering has been successfully implemented in several systems and in different forms, including electrical synapses constructed from ectopically expressed connexin gap junction proteins, synthetic optical synapses composed of presynaptic photon-emitting luciferase coupled with postsynaptic light-gated channels, and artificial neuropeptide signalling pathways. This Perspective describes these different methods and how they have been applied, and examines how the field may advance.


Assuntos
Sinapses Elétricas , Sinapses , Humanos , Sinapses/fisiologia , Sinapses Elétricas/fisiologia , Neurônios/fisiologia , Sistema Nervoso , Transdução de Sinais , Plasticidade Neuronal/fisiologia
7.
PLoS Genet ; 19(11): e1011045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011265

RESUMO

Electrical synapses are neuronal gap junction (GJ) channels associated with a macromolecular complex called the electrical synapse density (ESD), which regulates development and dynamically modifies electrical transmission. However, the proteomic makeup and molecular mechanisms utilized by the ESD that direct electrical synapse formation are not well understood. Using the Mauthner cell of zebrafish as a model, we previously found that the intracellular scaffolding protein ZO1b is a member of the ESD, localizing postsynaptically, where it is required for GJ channel localization, electrical communication, neural network function, and behavior. Here, we show that the complexity of the ESD is further diversified by the genomic structure of the ZO1b gene locus. The ZO1b gene is alternatively initiated at three transcriptional start sites resulting in isoforms with unique N-termini that we call ZO1b-Alpha, -Beta, and -Gamma. We demonstrate that ZO1b-Beta and ZO1b-Gamma are broadly expressed throughout the nervous system and localize to electrical synapses. By contrast, ZO1b-Alpha is expressed mainly non-neuronally and is not found at synapses. We generate mutants in all individual isoforms, as well as double mutant combinations in cis on individual chromosomes, and find that ZO1b-Beta is necessary and sufficient for robust GJ channel localization. ZO1b-Gamma, despite its localization to the synapse, plays an auxiliary role in channel localization. This study expands the notion of molecular complexity at the ESD, revealing that an individual genomic locus can contribute distinct isoforms to the macromolecular complex at electrical synapses. Further, independent scaffold isoforms have differential contributions to developmental assembly of the interneuronal GJ channels. We propose that ESD molecular complexity arises both from the diversity of unique genes and from distinct isoforms encoded by single genes. Overall, ESD proteomic diversity is expected to have critical impacts on the development, structure, function, and plasticity of electrical transmission.


Assuntos
Sinapses Elétricas , Peixe-Zebra , Animais , Sinapses Elétricas/fisiologia , Peixe-Zebra/genética , Proteômica , Sinapses/genética , Junções Comunicantes/fisiologia , Canais Iônicos , Isoformas de Proteínas/genética
8.
J Biol Chem ; 299(11): 105282, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742923

RESUMO

The intracellular domains of connexins are essential for the assembly of gap junctions. For connexin 36 (Cx36), the major neuronal connexin, it has been shown that a dysfunctional PDZ-binding motif interferes with electrical synapse formation. However, it is still unknown how this motif coordinates the transport of Cx36. In the present study, we characterize a phenotype of Cx36 mutants that lack a functional PDZ-binding motif using HEK293T cells as an expression system. We provide evidence that an intact PDZ-binding motif is critical for proper endoplasmic reticulum (ER) export of Cx36. Removing the PDZ-binding motif of Cx36 results in ER retention and the formation of multimembrane vesicles containing gap junction-like connexin aggregates. Using a combination of site-directed mutagenesis and electron micrographs, we reveal that these vesicles consist of Cx36 channels that docked prematurely in the ER. Our data suggest a model in which ER-retained Cx36 channels reshape the ER membrane into concentric whorls that are released into the cytoplasm.


Assuntos
Conexinas , Retículo Endoplasmático , Junções Comunicantes , Humanos , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplasmático/metabolismo , Junções Comunicantes/metabolismo , Células HEK293 , Domínios Proteicos , Motivos de Aminoácidos , Sinapses Elétricas/fisiologia , Mutação , Transporte Proteico/genética , Vesículas Sinápticas/patologia , Vesículas Sinápticas/ultraestrutura , Microscopia Eletrônica de Varredura
9.
Nat Commun ; 14(1): 5937, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741839

RESUMO

A fundamental organizing plan of the retina is that visual information is divided into ON and OFF streams that are processed in separate layers. This functional dichotomy originates in the ON and OFF bipolar cells, which then make excitatory glutamatergic synapses onto amacrine and ganglion cells in the inner plexiform layer. We have identified an amacrine cell (AC), the sign-inverting (SI) AC, that challenges this fundamental plan. The glycinergic, ON-stratifying SI-AC has OFF light responses. In opposition to the classical wiring diagrams, it receives inhibitory inputs from glutamatergic ON bipolar cells at mGluR8 synapses, and excitatory inputs from an OFF wide-field AC at electrical synapses. This "inhibitory ON center - excitatory OFF surround" receptive-field of the SI-AC allows it to use monostratified dendrites to conduct crossover inhibition and push-pull activation to enhance light detection by ACs and RGCs in the dark and feature discrimination in the light.


Assuntos
Células Amácrinas , Retina , Interneurônios , Dissidências e Disputas , Sinapses Elétricas
10.
Curr Biol ; 33(10): 2063-2074.e4, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37172585

RESUMO

The subcellular positioning of synapses and their specialized molecular compositions form the fundamental basis of neural circuits. Like chemical synapses, electrical synapses are constructed from an assortment of adhesion, scaffolding, and regulatory molecules, yet little is known about how these molecules localize to specific neuronal compartments. Here, we investigate the relationship between the autism- and epilepsy-associated gene Neurobeachin, the neuronal gap junction channel-forming Connexins, and the electrical synapse scaffold ZO1. Using the zebrafish Mauthner circuit, we find Neurobeachin localizes to the electrical synapse independently of ZO1 and Connexins. By contrast, we show Neurobeachin is required postsynaptically for the robust localization of ZO1 and Connexins. We demonstrate that Neurobeachin binds ZO1 but not Connexins. Finally, we find Neurobeachin is required to restrict electrical postsynaptic proteins to dendrites, but not electrical presynaptic proteins to axons. Together, the results reveal an expanded understanding of electrical synapse molecular complexity and the hierarchical interactions required to build neuronal gap junctions. Further, these findings provide novel insight into the mechanisms by which neurons compartmentalize the localization of electrical synapse proteins and provide a cell biological mechanism for the subcellular specificity of electrical synapse formation and function.


Assuntos
Sinapses Elétricas , Peixe-Zebra , Animais , Conexinas/metabolismo , Sinapses Elétricas/fisiologia , Junções Comunicantes/metabolismo , Neurônios/fisiologia , Sinapses/fisiologia , Peixe-Zebra/metabolismo
11.
Neuroscience ; 523: 31-46, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225049

RESUMO

Spinal sympathetic preganglionic neurons (SPNs) are among the many neuronal populations in the mammalian central nervous system (CNS) where there is evidence for electrical coupling between cell pairs linked by gap junctions composed of connexin36 (Cx36). Understanding the organization of this coupling in relation to autonomic functions of spinal sympathetic systems requires knowledge of how these junctions are deployed among SPNs. Here, we document the distribution of immunofluorescence detection of Cx36 among SPNs identified by immunolabelling of their various markers, including choline acetyltransferase, nitric oxide and peripherin in adult and developing mouse and rat. In adult animals, labelling of Cx36 was exclusively punctate and dense concentrations of Cx36-puncta were distributed along the entire length of the spinal thoracic intermediolateral cell column (IML). These puncta were also seen in association with SPN dendritic processes in the lateral funiculus, the intercalated and central autonomic areas and those within and extending medially from the IML. All labelling for Cx36 was absent in spinal cords of Cx36 knockout mice. High densities of Cx36-puncta were already evident among clusters of SPNs in the IML of mouse and rat at postnatal days 10-12. In Cx36BAC::eGFP mice, eGFP reporter was absent in SPNs, thus representing false negative detection, but was localized to some glutamatergic and GABAergic synaptic terminals. Some eGFP+ terminals were found contacting SPN dendrites. These results indicate widespread Cx36 expression in SPNs, further supporting evidence of electrical coupling between these cells, and suggest that SPNs are innervated by neurons that themselves may be electrically coupled.


Assuntos
Sinapses Elétricas , Junções Comunicantes , Camundongos , Ratos , Animais , Sinapses Elétricas/metabolismo , Ratos Sprague-Dawley , Junções Comunicantes/metabolismo , Conexinas/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Camundongos Knockout , Mamíferos/metabolismo
12.
Nature ; 618(7963): 118-125, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225999

RESUMO

Insect asynchronous flight is one of the most prevalent forms of animal locomotion used by more than 600,000 species. Despite profound insights into the motor patterns1, biomechanics2,3 and aerodynamics underlying asynchronous flight4,5, the architecture and function of the central-pattern-generating (CPG) neural network remain unclear. Here, on the basis of an experiment-theory approach including electrophysiology, optophysiology, Drosophila genetics and mathematical modelling, we identify a miniaturized circuit solution with unexpected properties. The CPG network consists of motoneurons interconnected by electrical synapses that, in contrast to doctrine, produce network activity splayed out in time instead of synchronized across neurons. Experimental and mathematical evidence support a generic mechanism for network desynchronization that relies on weak electrical synapses and specific excitability dynamics of the coupled neurons. In small networks, electrical synapses can synchronize or desynchronize network activity, depending on the neuron-intrinsic dynamics and ion channel composition. In the asynchronous flight CPG, this mechanism translates unpatterned premotor input into stereotyped neuronal firing with fixed sequences of cell activation that ensure stable wingbeat power and, as we show, is conserved across multiple species. Our findings prove a wider functional versatility of electrical synapses in the dynamic control of neural circuits and highlight the relevance of detecting electrical synapses in connectomics.


Assuntos
Drosophila melanogaster , Sinapses Elétricas , Voo Animal , Junções Comunicantes , Vias Neurais , Animais , Sinapses Elétricas/fisiologia , Fenômenos Eletrofisiológicos , Voo Animal/fisiologia , Junções Comunicantes/metabolismo , Neurônios Motores/fisiologia , Drosophila melanogaster/fisiologia
13.
Neuroscience ; 521: 58-76, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100373

RESUMO

Sexually dimorphic motoneurons (MNs) located in lower lumbar spinal cord are involved in mating and reproductive behaviours and are known to be coupled by electrical synapses. The cremaster motor nucleus in upper lumbar spinal cord has also been suggested to support physiological processes associated with sexual behaviours in addition to its thermoregulatory and protective role in maintaining testes integrity. Using immunofluorescence approaches, we investigated whether cremaster MNs also exhibit features reflecting their potential for electrical synaptic communication and examined some of their other synaptic characteristics. Both mice and rats displayed punctate immunolabelling of Cx36 associated with cremaster MNs, indicative of gap junction formation. Transgenic mice with enhanced green fluorescent protein (eGFP) reporter for connexin36 expression showed that subpopulations of cremaster MNs in both male and female mice express eGFP, with greater proportions of those in male mice. The eGFP+ MNs within the cremaster nucleus vs. eGFP- MNs inside and outside this nucleus displayed a 5-fold greater density of serotonergic innervation and exhibited a paucity of innervation by C-terminals arising from cholinergic V0c interneurons. All MNs within the cremaster motor nucleus displayed prominent patches of immunolabelling for SK3 (K+) channels around their periphery, suggestive of their identity as slow MNs, many though not all of which were in apposition to C-terminals. The results provide evidence for electrical coupling of a large proportion of cremaster MNs and suggest the existence of two populations of these MNs with possibly differential innervation of their peripheral target muscles serving different functions.


Assuntos
Sinapses Elétricas , Medula Espinal , Camundongos , Ratos , Masculino , Feminino , Animais , Sinapses Elétricas/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Neurônios Motores/metabolismo , Junções Comunicantes/metabolismo , Camundongos Transgênicos
14.
Nat Commun ; 14(1): 1347, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906653

RESUMO

Connexin 36 (Cx36) is responsible for signal transmission in electrical synapses by forming interneuronal gap junctions. Despite the critical role of Cx36 in normal brain function, the molecular architecture of the Cx36 gap junction channel (GJC) is unknown. Here, we determine cryo-electron microscopy structures of Cx36 GJC at 2.2-3.6 Å resolutions, revealing a dynamic equilibrium between its closed and open states. In the closed state, channel pores are obstructed by lipids, while N-terminal helices (NTHs) are excluded from the pore. In the open state with pore-lining NTHs, the pore is more acidic than those in Cx26 and Cx46/50 GJCs, explaining its strong cation selectivity. The conformational change during channel opening also includes the α-to-π-helix transition of the first transmembrane helix, which weakens the protomer-protomer interaction. Our structural analyses provide high resolution information on the conformational flexibility of Cx36 GJC and suggest a potential role of lipids in the channel gating.


Assuntos
Conexinas , Sinapses Elétricas , Humanos , Conexinas/metabolismo , Microscopia Crioeletrônica , Junções Comunicantes/metabolismo , Canais Iônicos , Lipídeos , Subunidades Proteicas
15.
Neuroscientist ; 29(5): 554-568, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125001

RESUMO

Gap junctions between neurons of the brain are thought to be present in only certain cell types, and they mostly connect dendrites, somata, and axons. Synapses with gap junctions serve bidirectional metabolic and electrical coupling between connected neuronal compartments. Although plasticity of electrical synapses has been described, recent evidence of the presence of silent, but activatable, gap junctions suggests that electrical nodes in a neuronal circuit can be added or suppressed by changes in the synaptic microenvironment. This opens the possibility of reconfiguration of neuronal ensembles in response to activity. Moreover, the coexistence of gap junctions in a glutamatergic synapse may add electric and metabolic coupling to a neuronal aggregate and may serve to constitute primed ensembles within a higher-order neural network. The interaction of chemical with electrical synapses should be further explored to find, especially, emerging properties of neuronal ensembles. It will be worth to reexamine in a new light the "functional" implications of the "anatomic" concepts: "continuity" and "contiguity," which were championed by Golgi and Ramón y Cajal, respectively. In any case, exploring the versatility of the gap junctions will likely enrich the heuristic aspects of the neural and network postulates.


Assuntos
Sinapses Elétricas , Junções Comunicantes , Humanos , Junções Comunicantes/metabolismo , Sinapses Elétricas/metabolismo , Sinapses/metabolismo , Neurônios/fisiologia , Encéfalo/metabolismo , Axônios/metabolismo
16.
Curr Biol ; 32(9): 2022-2036.e4, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35385694

RESUMO

Electrical synapses are present in almost all organisms that have a nervous system. However, their brain-wide expression patterns and the full range of contributions to neural function are unknown in most species. Here, we first provide a light-microscopic, immunohistochemistry-based anatomical map of all innexin gap junction proteins-the building blocks of electrical synapses-in the central nervous system of Drosophila melanogaster. Of those innexin types that are expressed in the nervous system, some localize to glial cells, whereas others are predominantly expressed in neurons, with shakB being the most widely expressed neuronal innexin. We then focus on the function of shakB in VS/HS cells-a class of visual projection neurons-thereby uncovering an unexpected role for electrical synapses. Removing shakB from these neurons leads to spontaneous, cell-autonomous voltage and calcium oscillations, demonstrating that electrical synapses are required for these cells' intrinsic stability. Furthermore, we investigate the role of shakB-type electrical synapses in early visual processing. We find that the loss of shakB from the visual circuits upstream of VS/HS cells differentially impairs ON and OFF visual motion processing pathways but is not required for the computation of direction selectivity per se. Taken together, our study demonstrates that electrical synapses are widespread across the Drosophila nervous system and that they play essential roles in neuronal function and visual information processing.


Assuntos
Proteínas de Drosophila , Sinapses Elétricas , Animais , Conexinas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Sinapses Elétricas/fisiologia , Junções Comunicantes/metabolismo , Sinapses/metabolismo
17.
Neural Netw ; 149: 184-194, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35248808

RESUMO

Bio-inspired recipes are being introduced to artificial neural networks for the efficient processing of spatio-temporal tasks. Among them, Leaky Integrate and Fire (LIF) model is the most remarkable one thanks to its temporal processing capability, lightweight model structure, and well investigated direct training methods. However, most learnable LIF networks generally take neurons as independent individuals that communicate via chemical synapses, leaving electrical synapses all behind. On the contrary, it has been well investigated in biological neural networks that the inter-neuron electrical synapse takes a great effect on the coordination and synchronization of generating action potentials. In this work, we are engaged in modeling such electrical synapses in artificial LIF neurons, where membrane potentials propagate to neighbor neurons via convolution operations, and the refined neural model ECLIF is proposed. We then build deep networks using ECLIF and trained them using a back-propagation-through-time algorithm. We found that the proposed network has great accuracy improvement over traditional LIF on five datasets and achieves high accuracy on them. In conclusion, it reveals that the introduction of the electrical synapse is an important factor for achieving high accuracy on realistic spatio-temporal tasks.


Assuntos
Sinapses Elétricas , Modelos Neurológicos , Potenciais de Ação/fisiologia , Humanos , Redes Neurais de Computação , Neurônios/fisiologia , Sinapses/fisiologia
18.
J Neurophysiol ; 127(3): 776-790, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171723

RESUMO

Like their chemical counterparts, electrical synapses show complex dynamics such as rectification and voltage dependence that interact with other electrical processes in neurons. The consequences arising from these interactions for the electrical behavior of the synapse, and the dynamics they create, remain largely unexplored. Using a voltage-dependent electrical synapse between a descending modulatory projection neuron (MCN1) and a motor neuron (LG) in the crustacean stomatogastric ganglion, we find that the influence of the hyperpolarization-activated inward current (Ih) is critical to the function of the electrical synapse. When we blocked Ih with CsCl, the apparent voltage dependence of the electrical synapse shifted by 18.7 mV to more hyperpolarized voltages, placing the dynamic range of the electrical synapse outside of the range of voltages used by the LG motor neuron (-60.2 mV to -44.9 mV). With dual electrode current- and voltage-clamp recordings, we demonstrate that this voltage shift is not due to a change in the properties of the gap junction itself, but is a result of a sustained effect of Ih on the presynaptic MCN1 axon terminal membrane potential. Ih-induced depolarization of the axon terminal membrane potential increased the electrical postsynaptic potentials and currents. With Ih present, the axon terminal resting membrane potential is depolarized, shifting the dynamic range of the electrical synapse toward the functional range of the motor neuron. We thus demonstrate that the function of an electrical synapse is critically influenced by a voltage-dependent ionic current (Ih).NEW & NOTEWORTHY Electrical synapses and voltage-gated ionic currents are often studied independently from one another, despite mounting evidence that their interactions can alter synaptic behavior. We show that the hyperpolarization-activated inward ionic current shifts the voltage dependence of electrical synaptic transmission through its depolarizing effect on the membrane potential, enabling it to lie within the functional membrane potential range of a motor neuron. Thus, the electrical synapse's function critically depends on the voltage-gated ionic current.


Assuntos
Sinapses Elétricas , Neurônios Motores , Potenciais da Membrana/fisiologia , Neurônios Motores/fisiologia , Transmissão Sináptica
19.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35135867

RESUMO

Electrical synapses couple inhibitory neurons across the brain, underlying a variety of functions that are modifiable by activity. Despite recent advances, many functions and contributions of electrical synapses within neural circuitry remain underappreciated. Among these are the sources and impacts of electrical synapse asymmetry. Using multi-compartmental models of neurons coupled through dendritic electrical synapses, we investigated intrinsic factors that contribute to effective synaptic asymmetry and that result in modulation of spike timing and synchrony between coupled cells. We show that electrical synapse location along a dendrite, input resistance, internal dendritic resistance, or directional conduction of the electrical synapse itself each alter asymmetry as measured by coupling between cell somas. Conversely, we note that asymmetrical gap junction (GJ) conductance can be masked by each of these properties. Furthermore, we show that asymmetry modulates spike timing and latency of coupled cells by up to tens of milliseconds, depending on direction of conduction or dendritic location of the electrical synapse. Coordination of rhythmic activity between two cells also depends on asymmetry. These simulations illustrate that causes of asymmetry are diverse, may not be apparent in somatic measurements of electrical coupling, influence dendritic processing, and produce a variety of outcomes on spiking and synchrony of coupled cells. Our findings highlight aspects of electrical synapses that should always be included in experimental demonstrations of coupling, and when assembling simulated networks containing electrical synapses.


Assuntos
Sinapses Elétricas , Junções Comunicantes , Sinapses Elétricas/fisiologia , Junções Comunicantes/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
20.
Immunity ; 55(1): 159-173.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34982959

RESUMO

To accommodate the changing needs of the developing brain, microglia must undergo substantial morphological, phenotypic, and functional reprogramming. Here, we examined whether cellular metabolism regulates microglial function during neurodevelopment. Microglial mitochondria bioenergetics correlated with and were functionally coupled to phagocytic activity in the developing brain. Transcriptional profiling of microglia with diverse metabolic profiles revealed an activation signature wherein the interleukin (IL)-33 signaling axis is associated with phagocytic activity. Genetic perturbation of IL-33 or its receptor ST2 led to microglial dystrophy, impaired synaptic function, and behavioral abnormalities. Conditional deletion of Il33 from astrocytes or Il1rl1, encoding ST2, in microglia increased susceptibility to seizures. Mechanistically, IL-33 promoted mitochondrial activity and phagocytosis in an AKT-dependent manner. Mitochondrial metabolism and AKT activity were temporally regulated in vivo. Thus, a microglia-astrocyte circuit mediated by the IL-33-ST2-AKT signaling axis supports microglial metabolic adaptation and phagocytic function during early development, with implications for neurodevelopmental and neuropsychiatric disorders.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Convulsões/imunologia , Animais , Comportamento Animal , Suscetibilidade a Doenças , Sinapses Elétricas/metabolismo , Metabolismo Energético , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Camundongos , Camundongos Knockout , Microglia/patologia , Neurogênese/genética , Proteína Oncogênica v-akt/metabolismo , Fagocitose , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...